The complexity of planar graph choosability

نویسنده

  • Shai Gutner
چکیده

A graph G is k-choosable if for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). We consider the complexity of deciding whether a given graph is k-choosable for some constant k. In particular, it is shown that deciding whether a given planar graph is 4-choosable is NP-hard, and so is the problem of deciding whether a given planar triangle-free graph is 3-choosable. We also obtain simple constructions of a planar graph which is not 4-choosable and a planar triangle-free graph which is not 3-choosable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acyclic improper choosability of graphs

We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...

متن کامل

Choosability and edge choosability of planar graphs without five cycles

It is proved that a planar graph G without five cycles is three degenerate, hence, four choosable, and it is also edge-(A( G) + l)h c oosable. @ 2002 Elsevier Science Ltd. All rights reserved. Keywords-Choosability, Edge choosability, Degeneracy, Planar graph.

متن کامل

The complexity of planar graph choosability 1

A graph G is k-choosable if for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). We consider the complexity of deciding whether a given graph is k-choosable for some constant k. In particular, it is shown that deciding whether a given planar graph is 4-choosable is NP-hard, and so is the problem o...

متن کامل

Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles

Let G be a planar graph with no two 3-cycles sharing an edge. We show that if ∆(G) ≥ 9, then χ′l(G) = ∆(G) and χ ′′ l (G) = ∆(G) + 1. We also show that if ∆(G) ≥ 6, then χ ′ l(G) ≤ ∆(G) + 1 and if ∆(G) ≥ 7, then χ′′ l (G) ≤ ∆(G) + 2. All of these results extend to graphs in the projective plane and when ∆(G) ≥ 7 the results also extend to graphs in the torus and Klein bottle. This second edge-c...

متن کامل

Bounds on circular consecutive choosability

The circular consecutive choosability chcc(G) of a graph G has been recently introduced in [2]. In this paper we prove upper bounds on chcc for series-parallel graphs, planar graphs and k-choosable graphs. Our bounds are tight for classes of series-parallel graphs and k-choosable graphs for k ≥ 3. Then we study the circular consecutive choosability of generalized theta graphs. Lower bounds for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 159  شماره 

صفحات  -

تاریخ انتشار 1996